
Executive Summary

At the University of Victoria (UVic), course registration is a difficult and stressful process

for students. Although registration is somewhat straightforward for those individuals that

manage to follow their curriculum throughout their degree, it can become an enormous

headache for students who get behind in their courses due to illness, poor grades, or

other reasons. The web applications provided by the University and third parties for

registration have a number of problems that will be solved by the Graduate! Application,

developed by Puzzle.

There is a website developed by a past student at UVic called ScheduleCourses.com

which serves as a significant improvement to the University provided site. It allows

students to select a list of courses, and then shift the course times selected around in

order to make an ideal schedule. It provides a dynamic visualisation of your timetable

which is very helpful for mitigating conflicting course times.

The most significant issue with ScheduleCourses.com is that there is no simple way to

view how your selection of courses in a particular semester will affect your final goal of

completing your degree program. Often, students will fail to register in a prerequisite

during a particular term. This will cause them to be unable to take required courses in

the future, putting them further behind in their degree. Similarly, courses are often

offered in specific terms, and an unaware student may need to wait a year to take a

particular course. Graduate! will take into account a user’s program requirements and

provide a means of visualizing how their selected registration will affect their final

graduation date, and future schedule requirements. The Graduate! scheduling system

will not only consider the student’s program requirements and course scheduling

constraints. It will taken into account a user’s personal scheduling preferences as well.

This is a fairly large project which will require a lot of data entry regarding various

program requirements at UVic. As such, Puzzle will develop a proof of concept that

shows how Graduate! will work with the Software Engineering program at UVic. If this

concept is satisfactory, it will then be possible to move forward with the other programs

offered at the school. This document describes the user interaction features, conceptual

design, technical design, management plan, and testing plan that will be employed by

Puzzle when developing the Graduate! application.

S3a Technical Design Document

Graduate!

University Degree Planner

Created by: Puzzle

Authors:

Brendan Heal

Jonah Rankin

Ali Nobari

Spencer Mandrusiak

Table of Contents

Executive Summary .. 1

1.0 Project Summary .. 8

1.1 Important Features .. 8

1.2 Hardware ... 8

1.3 Performance .. 8

2.0 User Interaction... 9

2.1 Application Views .. 9

2.1.1 Front Page .. 9

2.1.2 Login Page ... 9

2.1.3 Program Management Page .. 9

2.2 Use Case Diagram .. 11

2.3 User Use Cases .. 12

2.3.1 Registration .. 12

2.3.2 Login ... 14

2.3.3 Mark Courses Complete .. 15

2.3.4 Alternate - Mark Courses Complete... 15

2.3.6 Move Courses .. 18

2.3.8 Setting Generation Preferences ... 21

2.4 Administrator Use Cases .. 22

2.4.1 Administrator Login .. 22

2.4.2 Disable User ... 23

2.4.3 Delete User ... 23

2.4.4 Create New Course .. 24

2.4.5 Edit Course ... 25

2.4.5 Delete Course ... 26

2.5 Glossary .. 28

3.0 Management Plan ... 28

3.1 Feature Breakdown ... 28

3.1.1 Course Scheduling Algorithm... 28

3.1.2 Intuitive Interface Design .. 29

3.1.3 User Interface Layout ... 29

3.1.4 Data Collection/Scraping .. 29

3.1.5 Database Creation ... 30

3.1.6 Netlink Integration .. 30

3.1.7 User Authentication .. 30

3.2 Possible Implementations ... 30

3.2.1 Deployment .. 30

3.2.2 Persistent Storage .. 30

3.2.3 Server-side Technologies .. 31

3.2.4 Client-side Technologies .. 31

3.3 Minimal System ... 31

3.3.1 Summary .. 32

3.4 Team Structure and Organization... 32

3.4.1 Web Application Development - Brendan Heal ... 32

3.4.2 Database Creation - Ali Nobari .. 33

3.4.3 User Interface Development - Jonah Rankin ... 33

3.4.4 Course Scheduling Algorithm - Spencer Mandrusiak .. 33

4.0 Conceptual Design ... 33

4.1 Application Flow Diagram ... 33

4.2 Activity Diagram .. 34

4.3 Program Management Page Statechart Diagram .. 36

4.4 Use Case Create-Read-Update-Delete Matrix ... 37

4.5.1 Model-View-Controller ... 38

4.5.2 Observer Pattern .. 38

4.5.3 Façade Pattern ... 39

4.5.4 Singleton Pattern.. 39

5.0 Testing .. 1

5.1 Introduction .. 1

5.2 Test Automation and Integration ... 1

5.3 Test Driven Development ... 2

5.4 Test Cases .. 2

5.4.1 Test Case 1: Registration ... 2

5.4.1.1 Description ... 2

5.4.1.2 Assumptions .. 2

5.4.1.3 Pre Conditions ... 2

5.4.1.4 Event Flow ... 2

5.4.2 Test Case 2a: Program Requirements (Registration) ... 3

5.4.2.1 Description ... 3

5.4.2.2 Assumptions .. 3

5.4.2.3 Pre Conditions ... 3

5.4.2.4 Event Flow ... 3

5.4.3 Test Case 2b: Program Requirements (Account Preferences) 3

5.4.3.1 Description ... 3

5.4.3.2 Assumptions .. 3

5.4.3.3 Pre Conditions ... 3

5.4.3.4 Event Flow ... 4

5.4.4 Test Case 3a: Schedule Customization (Course Move) ... 4

5.4.4.1 Description ... 4

5.4.4.2 Assumptions .. 4

5.4.4.3 Pre Conditions ... 4

5.4.4.4 Event Flow ... 4

5.4.5 Test Case 3b: Schedule Customization (Course Removal) .. 5

5.4.5.1 Description ... 5

5.4.5.2 Assumptions .. 5

5.4.5.4 Pre Conditions ... 5

5.4.5.4 Event Flow ... 5

5.4.6 Test Case 4a: User-caused Conflict (Prerequisite Violation) .. 5

5.4.6.1 Description ... 5

5.4.6.2 Assumptions .. 6

5.4.6.3 Pre Conditions ... 6

5.4.6.4 Event Flow ... 6

5.4.7 Test Case 4b: User-caused Conflict (Term Offering Violation) 7

5.4.7.1 Description ... 7

5.4.7.2 Assumptions .. 7

5.4.7.3 Pre Conditions ... 7

5.4.7.4 Event Flow ... 7

5.4.8 Test Case 4c: User-caused Conflict (Enrollment Limit Violation).................................. 7

5.4.8.1 Description ... 7

5.4.8.2 Assumptions .. 8

5.4.8.3 Pre Conditions ... 8

5.4.8.4 Event Flow ... 8

5.4.9 Test Case 5a: Schedule Fitting Algorithm (Course with Prerequisites) 8

5.4.9.1 Description ... 8

5.4.9.2 Assumptions .. 8

5.4.9.3 Pre Conditions ... 8

5.4.9.4 Event Flow ... 8

5.4.10 Test Case 5b: Schedule Fitting Algorithm (Courses that are Prerequisites) 9

5.4.10.1 Description ... 9

5.4.10.2 Assumptions .. 9

5.4.10.3 Pre Conditions ... 9

5.4.10.4 Event Flow ... 9

5.4.11 Test Case 5c: Schedule Fitting Algorithm (Course offered once per year) 9

5.4.11.1 Description ... 9

5.4.11.2 Assumptions .. 9

5.4.11.3 Pre Conditions ... 9

5.4.11.4 Event Flow ... 9

5.4.12 Test Case 5d: Schedule Fitting Algorithm (User preferences cannot be fulfilled) 10

5.4.12.1 Description ... 10

5.4.12.2 Assumptions .. 10

5.4.12.3 Pre Conditions ... 10

5.4.12.4 Event Flow ... 10

5.4.13 Test Case 5e: Schedule Fitting Algorithm (Fitting multiple courses) 11

5.4.13.1 Description ... 11

5.4.13.2 Assumptions .. 11

5.4.13.3 Pre Conditions ... 11

5.4.13.4 Event Flow ... 11

5.4.14 Test Case 5f: Schedule Fitting Algorithm (Cannot satisfy program requirements)... 11

5.4.14.1 Description ... 11

5.4.14.2 Assumptions .. 12

5.4.14.3 Pre Conditions ... 12

5.4.14.4 Event Flow ... 12

5.4.15 Test Case 5g: Schedule Fitting Algorithm (Fitting courses to an empty schedule) .. 12

5.4.15.1 Description ... 12

5.4.15.2 Assumptions .. 12

5.4.15.3 Pre Conditions ... 12

5.4.15.4 Event Flow ... 12

5.4.16 Test Case 6: Course Overrides ... 13

5.4.16.1 Description ... 13

5.4.16.2 Assumptions .. 13

5.4.16.3 Pre Conditions ... 13

5.4.16.4 Event Flow ... 13

5.4.17 Test Case 7: Saving User Data ... 13

5.4.17.1 Description ... 13

5.4.17.2 Assumptions .. 13

5.4.17.3 Pre Conditions ... 14

5.4.17.4 Event Flow ... 14

1.0 Project Summary
The Graduate! web application will help students at the University of Victoria plan their degree

by providing students with tools to create custom tailored schedules, which accommodates each

individual’s specific needs. Many University programs have highly specific degree requirements

and the University of Victoria is no different. Just Right Showers has expressed interest in

commissioning a system that will assist UVic students by planning their entire degree. Puzzle’s

Graduate! system will help users by allowing them to customize certain aspects of the schedule,

such as having no evening classes or only four classes in a semester, to accommodate for the

busy lifestyle of a university student. This will give students more freedom when planning out

their degree and also help them keep track of what they have or have not completed. Another

way Graduate! benefits students is it will automatically regenerate a new schedule if a student

marks that they have failed a course; therefore the student will not have to deal with the burden

of rearranging their schedule if such an unfortunate event occurs.

1.1 Important Features

Graduate! has many important features such as:

● Generate a schedule for a specific degree/program. Users maintain one program

schedule. To facilitate schedule experimentation, users will be able to undo changes. All

changes a user makes are immediately saved.

● Allow users to customize aspects of the schedule such as number of courses per term,

time preferences, and specify any work terms to avoid classes being scheduled during

that time

● Make automatic adjustments to the schedule if a user makes alterations, changes their

preferences, or fails a course

● Allow a user to manually enter desired courses such as when students have not

declared their program

● Adheres to University restrictions on courses such as term offerings, pre and co-

requisites, maximum credits per term, etc.

● Allow user to view, update and save the schedule to their profile, as well as make

modifications at a later date

1.2 Hardware

Our software will run on all major operating systems including: Mac OS X, Linux, and Windows.

Graduate! will be designed to run on any modern HTML5 compliant browser including: Chrome,

Firefox, Safari, and Internet Explorer.

1.3 Performance

Graduate! is expected to be available at least 98% of the time in a year (approximately 18 days

of down time) and leave users without access to their schedules for no more than 48 hours at a

time. While Graduate! is not safety critical software, it is important that scheduling services be

available for users and that course registration will not be compromised because of a failure of

the Graduate! system.

The course scheduling algorithm is expected to complete in less than 5 seconds, and during

processing it must provide the user with feedback.

At Puzzle we value our users privacy and the final product will utilize industry standard

encryption and security practices to protect user information.

2.0 User Interaction

2.1 Application Views

2.1.1 Front Page

The Front Page is the landing page for the application with options to register, login, and

get more information about Graduate!.

2.1.2 Login Page

The Login Page contains a form for users to enter their Email and Password. The

Cancel button returns the user to their previous page — most commonly the Front Page.

The Login button proceeds with login validation. If the submitted credentials are valid the

user is taken to the Program Management Page. The Login Page may alternately

appear as a modal window over-top the previous view.

2.1.3 Program Management Page

The Program Management Page is the home view for the application. From this view a

logged-in user will be able to:

● Review their schedule including completed classes, the current semester and

future semesters.

● Add, modify, and remove courses

● Define program preferences

● Auto-generate schedules based on their preferences.

Figure 1: Mock-up of Program Management View

2.2 Use Case Diagram

Figure 2: Use Case Diagram

2.3 User Use Cases

2.3.1 Registration

When a user first accesses the web application they arrive at the Front Page; users have

the option to Login or Register. When the registration button is pressed the registration

process begins:

1. The user enters their account information including: Email, Password, and

University. After entering their information, the user presses the Next button to

proceed to the second registration step.

2. The user specifies their course and program information. First, the user selects

their program. Choosing a program populates the required courses list.

Optionally, the program can be unspecified and all classes must be added

manually. Second, the user adds other courses, as well as specifying electives.1

Third, the user marks all the courses in the list that they have completed. After all

program information has been entered, the user finalizes account registration by

pressing the Finish Registration button.2,3

3. After finishing the registration process, the user is redirected to the Program

Management Page.4

1 It is not required for users to specify all electives to register. Initially electives will be

specified as generic classes such as Technical Elective or Complementary Study. In

order to schedule an elective, it must be a specific course. This can be done after the

registration process.
2 Users will have the option to modify program details and add or remove courses after

registration.
3 The course and program specification process may be simplified through integration

with a user’s UVic account. This would allow for automatic retrieval program

information and completed courses.
4 Account confirmation emails are not a high priority for initial prototypes. They will be

implemented if time permits. If account confirmation is implemented, users will be

sent to the login page and notified that they must check their email and confirm their

account.

Error Handling

Incomplete Registration: If a user attempts to register for Graduate! without filling out all

required sections of the form, they will not be able to register. A notification will pop-up

informing the user that they have not filled out all required sections. They will continue to

receive this notification until they have filled in the missing sections.

Figure 3: Registration Sequence Diagram

Pseudo Code

2.3.2 Login

When arriving at the applications Front Page, pressing the Login button brings the user

to the Login Page. On the Login Page, the user enters their email and password. They

then press the Login button, which redirects them to the Program Management Page.

Alternatively, on the Login Page the Cancel button returns the user to the Front Page.

Sample Interaction: Jane has just arrived at the Front Page of Graduate!. Since she

already has an account, Jane selects the Login button, bringing her to the Login Page.

Jane enters her email and password, followed by pressing the Login button. Once

authorized, Jane is brought to the Program Management Page.

Error Handling

Incorrect Login: If a user attempts to login with an invalid username or password, they

will be denied access to Graduate!. A notification will be displayed informing the user

that the username or password they entered is invalid.

Cancel: If the user selected the login button and does not want to login, they may select

Cancel to return to the front page.

Pseudo Code

2.3.3 Mark Courses Complete

Once registration has been successfully completed, Graduate! will automatically mark

courses as completed based on the user’s transcript. Graduate! will update completed

courses each time the user logs in to the application.

Sample Interaction: Jay has already started using Graduate! and has a generated

schedule. Because Jay has just finished his term and passed his courses, one of which

is “SENG 321”, he navigates to the Program Management Page. When Jay arrives at

the page, he selects View Schedule and notices that Graduate! has already marked

“SENG 321” as complete.

Pseudo Code

2.3.4 Alternate - Mark Courses Complete

Upon registration, the user will be prompted to select all courses which they have

already completed. Alternatively, the user may go to the Program Management Page

and select Add Completed Course, where they will search for the appropriate course.

Once they have found the desired course, the user marks a checkbox indicating the

course has been completed.

Sample Interaction: Jay has already started using Graduate! and has a generated

schedule. Because Jay has just finished his term and passed his courses, one of which

is “SENG 321”, he navigates to the Program Management Page. When Jay arrives at

the page, he selects the Add Completed Course button, which displays a list of all

courses relevant to Jay’s degree. Jay searches for “SENG 321” and selects the

checkbox indicating he has completed the course.

Error Handling

Add incorrect course: If a user marks a course as complete that should not be

completed, the user must simply uncheck the box, indicating the course is not

completed.

Figure 4: Mark Course Complete Sequence Diagram

Pseudo Code

2.3.5 Add Courses to Schedule

A registered user will be able to add courses to their schedule. On the Program

Management Page, the user opens the Course Management Menu. From the Course

Management Menu the user can select courses as specified by their program

requirements or by search. To add courses to a term the user drags the course from the

Course Management Menu to the desired term on the Program Management Page.

Initially the Program Management Page will contain no courses. On screen prompts will

direct first time users to the Course Management Menu. The prompts for first time users

will introduce them to the basic functions of Graduate! including:

● The Course Management Menu

● Selecting electives

● How to add courses to a term

● How to move courses between terms

● How to use the Fit Unscheduled Courses option to automatically generate a

schedule according to specific preferences

In the case where a student adds a course when its prerequisite is not scheduled1, the

system will display clear visual identification2.

1 Prerequisite conflicts may occur for courses that have multiple unmet

prerequisites. In the case where the prerequisites do not apply to fulfilling degree

requirements a notification will appear. For example: A computer science

student wants to take POLI 410 which has the prerequisites POLI 310A and

POLI 310B. A notification will inform the users that if they take POLI 410 the

prerequisites may not be applicable to the completion of their degree.
2 Clear identification may include a red tint, exclamation icon, and/or pop-up

notification.

Sample Interaction: Jay has recently finished registering for Graduate!. When he arrives

at the Program Management Page, after logging in, a pop-up window directs his

attention to the Course Management Menu button, he clicks it and the Course

Management Menu appears. Jay wants to add MATH 122 and CSC 225 to the same

term as his friends so he drags them from the Menu to the Summer 2017 term.

Pseudo Code

2.3.6 Move Courses

On the Program Management Page, courses can be shifted between semesters by

drag-and-drop. The user will be notified graphically if they are moving a course to an

incorrect semester. This notification will appear for:

1. Missing prerequisites

2. Course not offered during the semester1

1 Criteria 2 depends on the release of course schedules — usually 4-8 months ahead

of their offering. If a course is moved beyond this date, the system will use the

historical data to determine if the course is likely to be offered. A notification will also

appear informing the user that offerings are subject to change.

Sample Interaction: Jane decides she no longer wants to take “CSC 225” in the

summer semester. Thinking ahead, Jane determines the only other available semester

for this course is in the fall. Once Jane arrives at the Program Management Page, she

drags “CSC 225” from her summer semester schedule to her fall semester schedule.

Graduate! verifies the course is available during this semester, and that Jane has the

proper prerequisites. Upon success, Graduate! automatically saves the new schedule.

Figure 5: Move Courses Sequence Diagram

Pseudo Code

 2.3.7 Fit Unscheduled Courses

The schedule generation performed by Graduate! will fit existing unscheduled courses to

the existing program schedule. To fit their unscheduled courses a user first navigates to

the Program Management Page. In the Unscheduled Courses panel, the user clicks the

Fit Courses button. A pop-over notification will inform the user that schedule generation

is being performed. When complete, the notification will update allowing the user to undo

the changes made. Fitted courses will be temporarily tinted1 so that users can see the

changes to their schedule.

In the case that a schedule cannot be generated, such as if the criteria is too restrictive,

the user will be informed that only a partial match was achieved. The notification will

detail the criteria which was and was not considered and users will have to ability to

undo any changes made. As with successful generation, courses added to the schedule

will be temporarily tinted1.

1 Tinted courses will exist while the schedule notification is visible. Once the user

closes the notification all courses will appear normally.

Sample Interaction: Jane has recently completed all of the information required to create

a schedule. There are a few courses which she knows she wants to take in the coming

semester because her friends are also taking them. From the Unscheduled Courses

panel she drags the courses she wants to take into her program schedule. For her

remaining unscheduled courses Jane presses the Fit Courses button. A notification pop-

up up saying her courses are being scheduled, in a few seconds the notification informs

her that a match was found. She can easily observe the changes to her schedule by

seeing the tinted courses. Jane likes her schedule, and she closes the notification.

Pseudo Code

2.3.8 Setting Generation Preferences

When a user clicks the Fit Unscheduled Courses button a settings window will appear.

On this window the user will be able to specify their target graduation date and their

desired numbers of courses per term. Users will be able to prioritize their preferences;

prioritization will assist the course generation algorithm in finding partial matches. After

all settings are specified a user can generate their schedule by pressing the Generate

Button. User’s close the preferences window by pressing Cancel.

A user's preferences will be retained and reused the next time a schedule is generated.

Sample Interaction: Jay has been using Graduate! for some time now. Jay decides for

his next semester he does not want more than four classes, so he navigates to the

Project Management Page and opens the Course Management Menu. Jay presses Fit

Unscheduled Courses button then sets the “Maximum Courses per Term” option to “4”

and changes it to the top priority. He then clicks Generate, and a schedule with only four

courses per term is generated.

Pseudo Code

2.4 Administrator Use Cases

2.4.1 Administrator Login

When arriving at the applications Front Page, pressing the Login button brings the

administrator to the Login Page. On the Login Page, the administrator enters their email

and password. They then press the Login button, which redirects them to the

Administrator Page. Alternatively, on the Login Page the Cancel button returns the

administrator to the Front Page.

Sample Interaction: Steve has just arrived at the Front Page of Graduate!. Since he

already has an administrator account, Steve selects the Login button, bringing him to

the Login Page. Steve enters his email and password, followed by pressing the Login

button. Once authorized, Steve is brought to the Administrator Page.

Error Handling

Incorrect Login: If an administrator attempts to login with an invalid username or

password, they will be denied access to Graduate!. A notification will be displayed

informing the administrator that the username or password they entered is invalid.

Pseudo Code

2.4.2 Disable User

Once the administrator has successfully logged in, they select View Users. This will

display a list of all current users in the system. The administrator then scrolls through the

list to find the username desired. Alternatively, the administrator may simply enter the

desired username into the search box in the View Users section. Once the user has

been found, the administrator selects the profile, followed by Disable User.

Sample Interaction: Steve is an administrator for Graduate!, therefore when he logs in,

he has all options that an administrator has. Steve is directed by his boss to disable the

user with the username “user123”. He selects View Users, and types “user123” into the

search box. Steve selects the profile, and disables it by pressing Disable User.

Pseudo Code

2.4.3 Delete User

Once the administrator has successfully logged in, they select View Users. This will

display a list of all current users in the system. The administrator then scrolls through the

list to find the username desired. Alternatively, the administrator may simply enter the

desired username into the search box in the View Users section. Once the user has

been found, the administrator selects the profile, followed by Delete User. They will be

prompted with, “Are you sure?”. The administrator will select Yes.

Sample Interaction: Since Sarah is an administrator, when she logs in she has

administrator options. Sarah’s boss has instructed her to delete the user with the

username “userSmith”. She selects View Users, and enters “userSmith” into the search

box. Sarah then selects the user profile, and selects Delete User. Graduate! prompts

her with a notification saying, “Are you sure?”. Sarah selects Yes.

Pseudo Code

2.4.4 Create New Course

After successfully logging in to Graduate!, an administrator will select View Courses. In

the upper right hand corner, they will select Add Course. This will display a form for the

administrator to fill out with fields such as Course Name, Course Description,

Prerequisites, and Co-requisites. Upon completion of filling out the form, they will

save the information by clicking Finish & Save. Alternatively, if the administrator does

not want to save the filled in information, they will select Cancel.

Sample Interaction: Sarah discovers the course “SENG 321” has not yet been added to

the Graduate! system. She first logs into her administrator account, and selects View

Courses. Once the page loads, she selects Add Course. Sarah fills out the required

information for the course and looks it over for any errors. Since she is satisfied with her

work, she selects Finish & Save.

Figure 6: Create New Course Sequence Diagram

Pseudo Code

2.4.5 Edit Course

 Once the administrator has successfully logged in, they select View Courses. This

 will display a list of all courses in the Graduate! system. The administrator can either

 scroll through the list of courses until they find the desired course, or they can simply

 type the name of the course into the search box on the View Courses page. The

 administrator selects the appropriate course, followed by Edit Course. When the

administrator is finished editing, they select Save.

Sample Interaction: Steve notices an error in the spelling of the course name “SNG

321”,so he logs into his account with administrator privileges. Steve selects View

Courses and scrolls through the list until he finds “SNG 321”. He selects the course,

followed by Edit Course. Steve then corrects the error and changes the course name to

“SENG 321”. Now that Steve has finished his corrections, he finishes by selecting Save.

Figure 7: Edit Course Sequence Diagram

Pseudo Code

2.4.5 Delete Course

Once the administrator has successfully logged in, they select View Courses. This

 will display a list of all courses in the Graduate! system. The administrator can either

 scroll through the list of courses until they find the desired course, or they can simply

 type the name of the course into the search box on the View Courses page. The

 administrator selects the appropriate course, followed by Delete Course. They will be

 prompted with, “Are you sure?”. The administrator will confirm by selecting Yes.

Sample Interaction: While going through the course list, Sarah notices that “ECON

103C” is still listed as an available course. Because Sarah knows this course is no

longer offered at the University of Victoria, she logs into her account with administrator

privileges. She selects View Courses and types “ECON 103C” into the search box.

Sarah then selects the course, and clicks Delete Course. Graduate! prompts her with a

notification saying, “Are you sure?”. Sarah confirms by selecting Yes.

Error Handling

Deleting an active course: An error should warn the administrator that they are about to

delete a course that is being used by students and is as well offered by the University. If

the administrator sees fit, they can delete the course from the database.

Figure 8: Delete Course Sequence Diagram

Pseudo Code

2.5 Glossary

Framework: A collection of software libraries that provide generic functionality that can be

customized or extended. A framework provides a fast way to implement a

commonly needed function.

Bootstrap: A HTML, CSS, JavaScript framework that facilitates fast and clean user interface

design

Operating System: System software that manages computer hardware and software resources

and provides common services for computer programs (reference:

https://en.wikipedia.org/wiki/Operating_system)

Use Case: A list of steps defining the interaction between a role and a system, to achieve a

 goal (reference: https://en.wikipedia.org/wiki/Use_case)

Web Application: A client-server software application in which the client (or user interface) runs

in a web browser (reference: https://en.wikipedia.org/wiki/Web_application)

3.0 Management Plan

3.1 Feature Breakdown

The core features of the Graduate! application are its course scheduling algorithm, intuitive user

interface, user authentication, course and user data storage, course information collection, and

Netlink integration.

3.1.1 Course Scheduling Algorithm

To obtain an “optimal” program schedule multi-stage processing will be performed. The

first stage generates options that satisfy University constraints, course prerequisites and

terms in which courses are available. The remaining stages generate schedules which

satisfy the constraints provided by the user such as graduation data and courses per term.

User specified constraints will be processed in the order specified. Users will be able to

prioritize their preferences (refer to Change User Preferences use case). If the algorithm

cannot satisfy all the provided constraints the system will provide a schedule satisfying

their highest priority constraints (the user will be notified that some preferences could not

be satisfied). If there would be multiple schedules satisfying all constraints the first

schedule found will be returned (If all preferences are satisfied the algorithm will determine

that the schedule is “optimal” and in the interest of performance the result will be returned

immediately). In the case that two outcomes are equally favoured the system will refer to

the University Program Course Schedule to decide upon an optimal schedule.

3.1.1.1 Implementation Details

A vertex graph will be constructed using a table of the courses that need to be scheduled,

the courses that are already scheduled, and their prerequisites. By traversing this graph in

topological order a list of valid course schedules will be created in such that no course is

taken before its prerequisite. Next, the list will be processed such that courses are

available only in the terms in which they are offered, while still maintaining the prerequisite

constraint. Variations of the schedules will be examined ensuring that user preferences, as

prioritized, are satisfied. If a schedule is generated that satisfies all preferences it will be

returned. If no schedule satisfies all preferences the system will backtrack until a schedule

is found which satisfies the user's highest priority schedules.

3.1.2 Intuitive Interface Design

The creation of an easy to learn and use interface is critical in the creation of this

application. To achieve this goal, Graduate! will utilize modern web application features

including drag-and-drop to modify schedules. The user with receive constant feedback

regarding the state of the system and have to ability to undo any changes they make. If a

user attempts to reschedule a course such that it violates a prerequisite there will be clear

indication on screen that the action cannot be completed; the courses will revert to their

previous valid position or show clearly that they are not scheduled at the right time. It will

be possible for users to override course prerequisites so that department course

accommodations can be input.

3.1.3 User Interface Layout

To maximize the screen area a side, or top, menu bar will provide the user with quick

access to additional features such as the selection of new courses, the modification of

schedule preferences, and changes to account information. Refinement of the user

interface will occur through rapid prototyping utilizing styling framework tools provided by

bootstrap.

3.1.4 Data Collection/Scraping

The data for both the courses and their pre-requisite/co-requisite can be collected from the

UVic databases. The information collected also includes the term in which the courses are

offered in and the lab sections that come with it. The data is then transferred onto the

personal server, where the course scheduler will be retrieving the data from.

3.1.5 Database Creation

A database will be created that stores all the relevant information for the Graduate!

application. The database will need to store the collected program requirements in order to

associate the courses based on prerequisites, corequisites, labs, electives and alternates.

Similarly, the course offerings will be stored based on the particular semesters they are

offered. User information and their saved schedule will also be stored in the database.

3.1.6 Netlink Integration

Using your Netlink account, the service is able to view the courses that a user has already

taken, or is enrolled in. This way, it can better tailor the remainder of the degree

scheduling to the user. After determining the courses the user has both taken and is

enrolled in, those courses can be removed from the overall group of courses that are

going to be used to create the schedule for the user. This removes redundancies in what

courses the user has to take. As well, pre-requisites can be determined for what courses

are going to be scheduled, in case the user took some courses out of the average ordering

of the courses they were supposed to take.

3.1.7 User Authentication

Users will initially register on the site and provide some required information to the

Graduate! application. They will then be able to login with their selected username and

password. All sensitive user information will be stored in a safe, encrypted form. The login

page will provide password recovery.

3.2 Possible Implementations

There are a number of technologies suitable for prototyping the Graduate! web application.

3.2.1 Deployment

The application will be deployed using Heroku (www.heroku.com). The service provides

an excellent support for multiple web development frameworks and facilitates rapid

prototyping. Heroku provides free-of-charge small-scale databases and simple deployment

using Git.

3.2.2 Persistent Storage

Heroku provides integrated add-ons for a variety of database management systems.

Given the experience of the development team, PostgreSQL or MongoDB will be used.

3.2.3 Server-side Technologies

The requirements for the back-end of the Graduate! web application can be fulfilled by

Ruby on Rails, Django, or Node.js. All of the candidate frameworks provide the routing,

templating, database object relational mapping, and REST api integrations which are

critical to the development of Graduate!.

3.2.4 Client-side Technologies

To create an engaging user interface, the application will rely on a JavaScript library such

as Angular, JQuery, or D3. Additionally, to rapidly develop a clean interface, Bootstrap will

be employed.

Angular is an extensive front-end web development framework supporting templates and

routing. Angular may not be necessary given the choice of Server-side technology.

Implementing a drag-and-drop interface is highly desirable; it will make moving courses

between semesters more intuitive and make the application friendly for mobile users.

There are several technologies for displaying interactive graphics including SVG (scalable

vector graphics), HTML5 Canvas, and JQueryUI.

The use of SVG is particularly promising because they are highly dynamic and would

provide the ability to display custom schedules as an interactive graph. To interact with

SVG graphics JQuery can be used, but alternative libraries such as D3 (https://d3js.org/)

may be better suited as it is specifically designed for the creation of interactive graphics.

3.3 Minimal System

This section describes the minimal system that will be provided by Puzzle by the end of the

term. Puzzle is going to develop a proof of concept of the Graduate! application, that shows how

it will work for a student taking the Software Engineering program at the University of Victoria.

Once the proof of concept is complete, adding other programs should be a simple matter of data

entry. As there is only a month of development time available, it may not be possible to develop

a fully functioning scheduling application by the project deadline. As such, Puzzle will focus on

implementing solutions to the major weaknesses that are present in the current systems.

ScheduleCourses.com shows how a timetable builder system can be developed for a given

semester, so our minimal system will not include such a feature. Rather, our program will

leverage the program requirements provided in order to develop a plan for which courses will be

taken in which semester, without the specific times being evaluated. This decision was made in

part because it is difficult to develop and is already available, and because at this time, the

University of Victoria only provides specific times for courses at most eight months in advance.

This does mean that our suggested schedule will occasionally result in a course conflict, but at

this time there is not a way to avoid this.

Our program will focus on providing students with a simple way to manage their program and

view how their scheduling choices affect their course load and final graduation date. It will make

it easy for students to fit electives in their schedule, and provide a list of possible electives

available that can be taken in a given semester. This allows students to work out a schedule

that gives them the electives they desire, as opposed to taking whichever elective happens to fit

their schedule. The University provides information about which courses are offered in which

terms. Our minimal system will also include an authentication system for users to register and

login to the system. Each user will be able to select their program and maintain a saved version

of their personalized schedule.

Netlink Integration will not be included in the minimal system. Rather than automatically

updating based on a student’s completed courses, users will manually select their completed

courses.

3.3.1 Summary

Graduate!’s main focus is to make planning a student’s degree easier and more

customizable, while pertaining to the University’s restrictions such as prerequisites and

term offerings. In the initial proof of concept, only the Software Engineering program at the

University of Victoria will be included. The minimal system provided will include a web

application that supports user authentication and dynamic schedule creation and

visualization based on course offerings provided by the University.

3.4 Team Structure and Organization

The various components of the project have been broken down into tasks that will be taken on

by individual team members of our group. The tasks include everything necessary in order to

deliver the minimal system, but will be carried out with the final system in mind.

3.4.1 Web Application Development - Brendan Heal

This task involves the design and development of the web application including the

selection of the database, front-end and back-end frameworks, configuration and

deployment.

Phase 1: System Design

The web application will be designed with the selected front and back-end frameworks in

mind.

Phase 2: Development and Deployment

A basic user authentication will be developed and deployed early so that the remaining

development can occur.

3.4.2 Database Creation - Ali Nobari

This task involves the collection of data from the University of Victoria and creation of a

database for the web application.

Phase 1: Data Collection

Two important pieces of information will be collected from the University of Victoria’s

website:

1. The program requirements for the Software Engineering program.

2. The course offerings by term.

Ideally, a scraper will be implemented that can access information from UVic’s calendar

page.

Phase 2: Database Creation

A database will be created which allows comprehensive access to the data collected as

well as user information and user schedules.

3.4.3 User Interface Development - Jonah Rankin

A user interface will be developed according to the client’s requirements.

Phase 1: Prototyping

User interface prototypes will be developed and presented to the client. Upon satisfaction

with the user interface proposed, phase 2 will begin.

Phase 2: Interface Implementation

The views will be implemented using the selected front-end framework.

3.4.4 Course Scheduling Algorithm - Spencer Mandrusiak

An algorithm will be implemented to solve the course schedule optimization problem.

Phase 1: Research

The course scheduling algorithm will be researched in order to ensure an optimal solution

is selected.

Phase 2: Implementation

The course scheduling algorithm will be implemented and rigorously tested.

4.0 Conceptual Design

4.1 Application Flow Diagram

The application flow diagram is a representation of the various views that will be included in the

system and the links between them. The grey boxes are tasks that can be achieved from the

Program Management page. This diagram is useful for understanding navigation through the

Graduate! web application.

Figure 9: Application Flow Diagram

4.2 Activity Diagram

This activity diagram serves as a high level representation of workflow through the application. It

describes the flow of various user actions throughout the Graduate! application. From the front

page view, the user can access the Login, Signup and About page. Once a user has signed up

with the site, they can login. Upon logging in successfully, the user will be redirected to their

Program Management page. This page will contain the drag and drop interface for manipulating

the user’s schedule, and a collapsible side menu which provides tools for interacting with the

schedule. From the program management view, the user can manage their course, and

schedule settings. The collapsible side menu also contains the schedule generation function.

This will generate a schedule tailored to the preferences specified by the user. The program

management view includes a button to bring a user to the Account settings page, where they

can update information about their account, such as their degree program in the event of a

change.

Figure 10: Activity Diagram

4.3 Program Management Page Statechart Diagram

This statechart diagram is a detailed description of the Program Management Page. It shows

the behaviour of the page depending on the action that is performed by the user, while using the

web application. It can be seen as a complete description of the Program Management Page’s

functionality.

Figure 11: State Diagram for Program Management Page

4.4 Use Case Create-Read-Update-Delete Matrix

The figure below shows how the various user use cases interact with data objects either through

Create, Read, Update or Delete (CRUD).

 User UserPrefs UserCourses Term Schedule

Set

preferences

 R RU

Move course R UD C U U

Override

Prerequisite

 R U

Fit

Unscheduled

Courses

 R RU C U U

Sign-up C C C

Specify

Program

 R C U C U U

Mark Course

Complete

 R U

C - create, R - read, U - update, D - delete

Table 1: CRUD Matrix

4.5 Class Diagram

The class diagram is a representation of the classes used in Graduate, and their inter-

relationships, functions and attributes. In order to achieve the desired Model-View-

Controller(MVC) architecture, a number of design patterns will be used.

4.5.1 Model-View-Controller

Model-view-controller(MVC) is a software architectural pattern that is commonly used when

developing web applications. MVC facilitates the development of user interfaces by dividing the

software application into three interconnected components. The first components are the

models, which are strongly tied to the database and manage system data directly. Furthermore,

a view is the output representation of the application, and defines the look and feel of the

application by rendering information from the model. Finally, controllers are used to send

commands to the views and models, often based on some user input.

In our class diagram, each model is listed along the bottom. There is one model for each

database entities, and each model defines accessor methods for all the entities attributes. The

following data entities will be stored in the system:

● Student : Student user information.

● Admin: Administrator user information.

● Schedule: Schedule information. Each student user will have a schedule. Schedules will

be composed of course offering selections made by the user and the schedule

generation algorithm.

● Preferences: User preference information, each student will have a set of preferences.

● Course: Course information such as prerequisites and program requirements.

● Offering: Course offerings. Each course is offered in one or many timeslots.

● Professor: Course professor information.

The model facade is a facade class which acts as a simplified interface to the model. It is a

singleton to ensure that concurrent changes to the same database element can not occur. The

various controllers in our system will interact with this singleton object, which in turn saves itself

to a database backend. There will be controllers for log-in, user registration, schedule

management and generation, and course management. These controllers contain functions

which are invoked when the user interacts with the website, and often involve either creating,

reading, updating, or deleting a model object. For instance, the user signup page will invoke the

registration controller to create new users.

4.5.2 Observer Pattern

The observer pattern defines two acting classes, the subject and the observer. The subject

maintains a list of dependent observers, and notifies them when a state change occurs. In this

implementation of MVC, all views will be observers, and the models will be subjects. Therefore,

when a model is changed, it will notify all dependent views of the change, and they will be

updated accordingly.

Figure 12 Observer Pattern Example

4.5.3 Façade Pattern

The façade pattern defines a façade object, which acts as a simplified interface to a large body

of code. In order to facilitate the management of the various system models in our design, a

model façade will be included which acts as an interface for accessing the models in the

database. Therefore, the model façade contains a representation of the entire database.

Controllers will make changes to the model facade, and these changes will be saved to the

database.

4.5.4 Singleton Pattern

The singleton pattern ensures that prevents instantiation of a class. This ensures that only a

single instance of a singleton class can exist. In order to ensure a consistent state for the model

façade, it will be a singleton. This means that all users will interact with the same instance of the

model façade.

Figure 13 Class Diagram

5.0 Testing

5.1 Introduction

In order to ensure that Graduate! meets various user requirements and acceptance standards, a

suite of tests will be developed for the system. These tests will be designed to cover all the

functions of the system and are based on the test plan specified by the client, Just Right

Showers. These tests will ensure that the system is functioning as expected and facilitate the

detection of errors during development. The main features that will be tested are :

● Registration: Users can register and sign in to the Graduate! application.

● Program Requirements: The Graduate! application can access and process program

requirements from the University of Victoria website.

● Schedule Customization: The Graduate! application allows a user to customize their

schedule using a drag and drop interface.

● Course Conflicts: The Graduate! application detects course conflicts and scheduling

problems and reports them to the user in an intuitive manner.

● Schedule Fitting Algorithm: The Graduate! application makes use of a schedule fitting

algorithm that can generate an optimal schedule that meets program requirements,

course offerings, and user preferences.

● Course Overrides: The Graduate! application allows users to specify overrides for

course conflicts in the event of some department deployed override.

● Saving User Data: The Graduate! application dynamically saves a user’s schedule and

preferences to a database when they are modified.

5.2 Test Automation and Integration

As Graduate! is a web-based application, all of these tests can be automated using the

Selenium Web Driver framework. In order to minimize the effort required to test the system, a

suite of automated unit tests will be created and integrated into the build cycle of Graduate!.

Each time the code base is updated, the suite of tests will be run and a test report will be

generated that indicates the success or failure of each test case. This test report can and will be

reviewed before the deployment of any given version of the Graduate! application. This will be

done during the code review stage, where developers review each other's work before finally

committing an update to the main codebase.

5.3 Test Driven Development

At Puzzle, we strongly believe in test-driven development. This means that before implementing

a given feature, tests for the feature will be written. Each feature will be considered complete

when the basic functionality is met, and all tests for the feature have been passed. This allows

for concrete, incremental improvements to the application.

5.4 Test Cases

5.4.1 Test Case 1: Registration

5.4.1.1 Description

Test registration by creating a new account in the system. To ensure the account is

successfully created, the user will logout and log back in with the newly created

username and password.

5.4.1.2 Assumptions

The user does not attempt to create an account with a username already in the system.

5.4.1.3 Pre Conditions

User has navigated to the registration page and has the registration form displayed on

screen.

5.4.1.4 Event Flow

Test Step Input Expected Result

User enters email, password,
and university in registration
form, followed by clicking
Next

User email, password, and
university
User clicks Next

Second registration screen
displayed with form to fill out
program information, add additional
courses, and indicate any completed
courses

User selects type of degree,
adds any additional courses,
and selects at least one
course complete. User
selects Finish Registration

User degree, additional
courses, and complete courses
User clicks Finish Registration

User profile is saved and the user is
redirected to the Program
Management Page

User logs out of system User selects Log Out User is logged out and is redirected
to the Front Page

User navigates to Login Page
and logs in with newly
registered username and
password

User username and password User logs in successfully and is
redirected to the Program
Management Page indicating
registration was successful

Table 2: Registration Event Flow

5.4.2 Test Case 2a: Program Requirements (Registration)

5.4.2.1 Description

When a program is specified by the user, the “Required Courses” list in the Course

Management Menu will be populated with the courses as specified in the most recent

edition of the UVic course calendar.

5.4.2.2 Assumptions

The program is specified during registration process.

5.4.2.3 Pre Conditions

No program has been specified. The user has navigated to the registration page and it is

displayed on screen. They have already submitted their email, password, and university

as per step 1 of Test Case 1 and pressed the Next button.

5.4.2.4 Event Flow

Test Step Input Expected Result

User selects type of degree
and then clicks Finish
Registration.

“Software Engineering” degree
selected from the degree pull
down menu then presses
Finish Registration.

User arrives at the Program
Management Page.

From the Program
Management Page, the user
opens the Course
Management Menu.

The user opens the Course
Management Menu by clicking

the menu button on the
Program Management Page.

Under the Required Courses list
item the courses that appear
correspond to those in the latest
edition of the UVic Course Calendar
for the type of degree selected.

Table 3: Program Requirements (Registration) Event Flow

5.4.3 Test Case 2b: Program Requirements (Account Preferences)

5.4.3.1 Description

When a program is specified, the “Required Courses” list in the Course Management

Menu is populated with the courses specified in the most recent edition of the UVic

course calendar.

5.4.3.2 Assumptions

The program is specified through the user’s account settings. In this test case the user

already has specified their program. They change the program through their account

settings.

5.4.3.3 Pre Conditions

The user’s account is already created. The user’s program has already been specified.

The user is on the Program Management Page.

5.4.3.4 Event Flow

Test Step Input Expected Result

User opens their Account
Settings.

Click Account Settings link in

the navigation bar.
The Account Settings window
appears.

From the Program pull down
menu the user selects a new
Program.

Click the Program pull down
menu to open it. Select a new
program. Press Ok on the

Account Settings window to
save and close the window.

The program is changed and the
Account Settings window is closed.

User navigates to Course
Management Menu.

The user opens the Course
Management Menu by clicking

the menu button on the
Program Management Page.

Under the Required Courses list item
the courses that appear correspond
to those in the latest edition of the
UVic Course Calendar for the type of
degree selected.

Table 4: Program Requirements (Account Preferences) Event Flow

5.4.4 Test Case 3a: Schedule Customization (Course Move)

5.4.4.1 Description

Test the customization features of the schedule page and the dynamic saving of the

user’s modifications to the schedule. The action of moving a course to a different term

will be tested.

5.4.4.2 Assumptions

A user is created on the system that has selected their degree program.

5.4.4.3 Pre Conditions

The user’s account is already created. The user’s program has already been specified.

User is logged in and viewing the Program Management page.

5.4.4.4 Event Flow

Test Step Input Expected Result

User moves a course from
one term to another valid
term.

User clicks course, holds
mouse button, and drags
course to another term that is
not restricted by prerequisites,
course offerings, etc.

The course fits into its position in the
term column and stays there. The
system displays a “Saving…” dialog
to the user.

The system saves the user’s
profile upon displaying the
“Saved” dialog.

 The schedule is saved.

The user refreshes the page. User clicks refresh on browser. The schedule is displayed with the
user’s modification to the course

term included, indicating that is has
been successfully saved in the
system.

Table 5: Schedule Customization (Course Move) Event Flow

5.4.5 Test Case 3b: Schedule Customization (Course Removal)

5.4.5.1 Description

Test the customization features of the schedule page and the dynamic saving of the

user’s modifications to the schedule. The removal of a course from the schedule will be

tested.

5.4.5.2 Assumptions

A user is created on the system that has selected their degree program.

5.4.5.4 Pre Conditions

The user’s account is already created. The user’s program has already been specified.

User is logged in and viewing the Program Management page.

5.4.5.4 Event Flow

Test Step Input Expected Result

User clicks and begins
dragging a course

User clicks course, holds
mouse button, and drags out of
its column.

A small garbage can symbol
appears at the bottom of the screen

The user puts the course in
the garbage.

Course is dragged over the
garbage can and the mouse
button is released.

The course disappears into the
garbage can

The user refreshes the page. User clicks refresh on browser. The schedule is displayed with the
user’s modification to the course
term included, indicating that is has
been successfully saved in the
system.

Table 6: Schedule Customization (Course Removal) Event Flow

5.4.6 Test Case 4a: User-caused Conflict (Prerequisite Violation)

5.4.6.1 Description

A user moves a class to an earlier term and causes a prerequisite violation. The course

move will be accepted by the system but warnings will notify the user that one or more

prerequisites have been violated. A warning appears to notify the user of the violation.

The user cannot make further changes until the notification is dismissed and while the

prerequisite is violated the course will be tinted red and display a warning icon .

5.4.6.2 Assumptions

User enters the prerequisite course in a later term than the course requiring the

prerequisite.

5.4.6.3 Pre Conditions

User has an account, a generated schedule, and is on the Program Management Page.

In their generated schedule, the course CSC 225 will be placed in the Summer 2016

term and course CSC 226 will be placed in the Fall 2016 term.

5.4.6.4 Event Flow

Test Step Input Expected Result

The user moves CSC 226
into the Spring 2016 term.

The user clicks and drags the
course CSC 226 into the Spring
2016 term

A notification pop-up appears: “CSC
226 has been scheduled before its
prerequisite, CSC 225”.
The CSC 226 course is moved to
the Spring 2016 term, it is tinted red
and displays a warning icon, .

The user cannot make
changes until the notification
is dismissed.

User tries to move a different
course and tries to open the
Course Management Menu by

clicking the menu button on
the Program Management
Page.

No changes to the page are made.

The user dismisses the
notification.

The user presses the close icon
on the notification, .

The pop-up notification disappears.
CSC 226 continues to be tinted red
and display the warning icon, .

The warning text can be
redisplayed by click on the
warning icon.

The user clicks on the warning
icon, , for the CSC 226
course.

A pop-over appears displaying the
text: “CSC 226 has been scheduled
before its prerequisite, CSC 225”.

The pop-over is closed by
clicking anywhere on the
screen outside of the pop-
over.

The user clicks a blank area on
the navigation bar.

The pop-over closes.

The user moves CSC 226
back to the Fall 2016 term.

The users clicks and drags the
course CSC 226 from the
Spring 2016 term to the Fall
2016 term.

The red tint and the warning icon are
no longer displayed on CSC 226.

Table 7: User-caused Conflict (Prerequisite Violation) Event Flow

5.4.7 Test Case 4b: User-caused Conflict (Term Offering Violation)

5.4.7.1 Description

The user moves a course into a term where it is not offered. The system will not accept a

term violation. When the user drags the course over a term in which the course is not

offered the entire term will display a red shading. If the user releases the mouse button

the course will revert to its initial position. A notification will appear: “Course not offered

in <Term Name>”. This notification will not block user actions until dismissed, the

notification will timeout and disappear after 5 seconds.

5.4.7.2 Assumptions

SENG 321 is not offered in the Summer 2016 term.

5.4.7.3 Pre Conditions

The user is enrolled in SENG 321 in the Spring 2016 term.

5.4.7.4 Event Flow

Test Step Input Expected Result

The user drags SENG 321 to
the Summer 2016 term

User clicks on SENG 321
course in the Spring 2016 term
and drags it to the Summer
2016 term. User does not
release the mouse button

The Summer 2016 term becomes
shaded red.

The user tries to move SENG
321 to the Summer 2016 term

While SENG 321 is over the
Summer 2016 term the user
releases the mouse button.

The SENG 321 course reverts back
to its initial position in the Spring
2016 term. A notification appears:
“Course not offered in <Term
Name>”.

Notification automatically
closes.

No action After 5 seconds the notification
disappears.

Table 8: User-caused Conflict (Term Offering Violation) Event Flow

5.4.8 Test Case 4c: User-caused Conflict (Enrollment Limit Violation)

5.4.8.1 Description

The user moves a course to a term already containing the maximum number of courses

(At UVic the maximum number of full-credit courses is 6). The system will not accept an

enrolment limit violation. When the user drags a course over a full term the term will be

shaded red. If a user releases mouse button the course will revert to its initial position

and a notification will appear: “Enrollment limit for <Term Name> has been reached”.

This notification will not block user actions until dismissed, the notification will timeout

and disappear after 5 seconds.

5.4.8.2 Assumptions

Spring 2016 contains CSC 320, which is offered in both the Spring and Summer terms.

5.4.8.3 Pre Conditions

The Summer 2016 term contains six full-credit courses.

5.4.8.4 Event Flow

Test Step Input Expected Result

The user drags CSC 320 to
the Summer 2016 term

User clicks on CSC 320 course
in the Spring 2016 term and
drags it to Summer 2016. The
user does not release the
mouse button.

The Summer 2016 term becomes
red.

The user tries to move CSC
320 to the Summer 2016 term

When CSC 320 is dragged over
the Summer 2016 term the user
releases the mouse button.

The CSC 320 course reverts back to
its initial position in the Spring 2016
term. A notification appears:
“Enrolment limit for <Term Name>
has been reached”.

Notification automatically
closes.

No action After 5 seconds the notification
disappears.

Table 9: User-caused Conflict (Enrollment Limit Violation) Event Flow

5.4.9 Test Case 5a: Schedule Fitting Algorithm (Course with Prerequisites)

5.4.9.1 Description

This test case verifies that the system will correctly schedule a single course after all of

its prerequisites.

5.4.9.2 Assumptions

CSC 226 is a prerequisite for CSC 360. CSC 360 is not offered in the Summer term.

5.4.9.3 Pre Conditions

There is no program specified, CSC 226 and CSC 360 are the only courses listed. The

term for CSC 226 is already chosen and it is placed in the Spring 2016 term. The Course

Management Menu is open.

5.4.9.4 Event Flow

Test Step Input Expected Result

User fits their unscheduled
courses

User presses Fit Unscheduled
Courses button in the Course
Management Menu.

CSC 360 is automatically scheduled
and it appears in the Fall 2016 term,
after CSC 226.

Table 10: Schedule Fitting Algorithm (Course with Prerequisites) Event Flow

5.4.10 Test Case 5b: Schedule Fitting Algorithm (Courses that are Prerequisites)

5.4.10.1 Description

This test case verifies that the system will correctly schedule a single course before all

courses it is a prerequisite for.

5.4.10.2 Assumptions

CSC 226 is a prerequisite for CSC 360. CSC 226 is not offered in the Summer term.

5.4.10.3 Pre Conditions

There is no program specified, CSC 226 and CSC 360 are the only courses listed. The

term for CSC 360 is already chosen and it is placed in the Fall 2016 term. The Course

Management Menu is open.

5.4.10.4 Event Flow

Test Step Input Expected Result

User fits their unscheduled
courses

User presses Fit Unscheduled
Courses button in the Course
Management Menu.

CSC 226 is automatically scheduled
and it appears in the Spring 2016
term, before CSC 360.

Table 11: Schedule Fitting Algorithm (Courses that are Prerequisites) Event Flow

5.4.11 Test Case 5c: Schedule Fitting Algorithm (Course offered once per year)

5.4.11.1 Description

This test verifies that courses offered only once per year are placed in a valid term. The

test involves integrating SENG 299, which is only offered in the Summer term, when

they are already enrolled in a work term for the upcoming Summer. SENG 299 should

be scheduled for the following Summer term.

5.4.11.2 Assumptions

SENG 299 is offered only in the Summer term. The user has registered for Work Term 1

in the upcoming Summer term.

5.4.11.3 Pre Conditions

Work Term 1 is placed in the Summer 2016 term. The Course Management Menu is

open. SENG 299 is the only course that is unscheduled.

5.4.11.4 Event Flow

Test Step Input Expected Result

User fits their unscheduled
courses.

The user presses the Fit
Unscheduled Courses button

SENG 299 is scheduled in the
Summer 2017 term.

in the Course Management
Menu.

Table 12: Schedule Fitting Algorithm (Courses offered once per year) Event Flow

5.4.12 Test Case 5d: Schedule Fitting Algorithm (User preferences cannot be

fulfilled)

5.4.12.1 Description

This test verifies that behaviour of the system when the user specified course

preferences cannot be fulfilled. The user specifies that they want to graduate after the

Spring 2017 term and they only want to take three courses per term. The system cannot

fit to both of the preferences specified by the user and will prioritize the graduation date

constraint providing a schedule which has six courses per term and is finished after

Spring 2017.

5.4.12.2 Assumptions

The current term being scheduled is Spring 2016. The student has just finished their

entire third year (Term 3B, as defined in the Software Engineering course calendar) and

has one work term remaining. The user has specified the Software Engineering

program.

5.4.12.3 Pre Conditions

The program preferences have already been defined. The user has already indicated

that graduating after the Spring 2017 term is a higher priority than three courses per

term. No courses are scheduled after Spring 2016. The Course Management Menu is

open.

5.4.12.4 Event Flow

Test Step Input Expected Result

User fits their unscheduled
courses.

The user presses the Fit
Unscheduled Courses button
in the Course Management
Menu.

Courses are scheduled as per the
UVic Software Engineering Course
Calendar. Course Term 4a is
scheduled for Summer 2016, Work
Term 4 is scheduled for Fall 2016,
and Course Term 4b is scheduled
for Spring 2017.

A notification appears: “Unable to
fulfill all course preferences. Cannot
generate a valid schedule with three
course(s) per term. Click here to
Undo changes.”

Table 13: Schedule Fitting Algorithm (User preferences cannot be fulfulled) Event Flow

5.4.13 Test Case 5e: Schedule Fitting Algorithm (Fitting multiple courses)

5.4.13.1 Description

This test case covers the situation where multiple courses are need to be scheduled

each with specific requirements. This test is designed to account satisfying the

requirements of test cases 5a to 5d in a single action. The result should be the same as

the combined effect each of the individual test cases.

CSC 225 and CSC 226 will be fitted into the schedule. CSC 110 will be marked as

completed and CSC 360 has been set for the Fall 2016 term.

SENG 299 will be fitted into the schedule in the Summer 2016 term and will violate the

only one course per term preference since CSC 226 will also be scheduled in the

Summer 2016 term.

5.4.13.2 Assumptions

No program is specified. The system assumes graduation requirements are fulfilled upon

completion of CSC 225, CSC 226, CSC 360, and SENG 299. SENG 299 is only offered

in the Summer. CSC 110 is a prerequisite for CSC 225. CSC 225 is a prerequisite for

CSC 226. CSC 226 is a prerequisite for CSC 360.

5.4.13.3 Pre Conditions

User specifies that they want to graduate after Fall 2016, as their highest priority, and

that they only want one course per term. The Course Management Menu is open.

5.4.13.4 Event Flow

Test Step Input Expected Result

User fits their unscheduled
courses.

The user clicks the Fit
Unscheduled Courses button
in the Course Management
Menu.

CSC 225 is scheduled for Spring
2016. CSC 226 and SENG 299 are
scheduled for Summer 2016.
Graduation date still set for the end
of Fall 2016 term.

A notification appears: “Unable to
fulfill all course preferences. Cannot
generate a valid schedule with one
course(s) per term. Click here to
Undo changes.”

Table 14: Schedule Fitting Algorithm (Fitting multiple courses) Event Flow

5.4.14 Test Case 5f: Schedule Fitting Algorithm (Cannot satisfy program

requirements)

5.4.14.1 Description

This test case verifies how the system handles fitting a schedule that cannot satisfy the

requirements specified by the University. In this test case there is no valid position for

CSC 225, the upcoming semester is full and the following semester contains a course,

CSC 226, which requires CSC 225. The system will fail to generate any valid schedule

and will notify the user about the issue.

5.4.14.2 Assumptions

CSC 225 is required for taking CSC 226. Six courses are specified for the upcoming

term, this satisfies the maximum enrollment limitation for that term.

5.4.14.3 Pre Conditions

CSC 226 is scheduled for the next semester. The current semester already has full

enrollment, i.e. six courses are specified. CSC 225 is unscheduled and will be

automatically fit.

5.4.14.4 Event Flow

Test Step Input Expected Result

User fits unscheduled
courses

The user clicks the Fit
Unscheduled Courses button
in the Course Management
Menu.

No changes to the schedule occur.

A notification appear: “Unable to
schedule CSC 225 because its
prerequisite, CSC 226, is scheduled
for the current term.”

Table 15: Schedule Fitting Algorithm (Cannot satisfy program requirements) Event Flow

5.4.15 Test Case 5g: Schedule Fitting Algorithm (Fitting courses to an empty

schedule)

5.4.15.1 Description

This test case verifies that the system will generate a schedule matching the UVic

course calendar is no preferences or course selection is specified.

5.4.15.2 Assumptions

The user has chosen the Software Engineering program. No program preferences have

been specified. No courses have been manually scheduled. Fall 2016 is the upcoming

semester.

5.4.15.3 Pre Conditions

The user’s schedule is empty. The Course Management Menu is open.

5.4.15.4 Event Flow

Test Step Input Expected Result

User fits their unscheduled
courses.

The user clicks the Fit
Unscheduled Courses button

in the Course Management
Menu.

The schedule generated will match
the schedule specified by the UVic
Software Engineering course
calendar.

Table 16: Schedule Fitting Algorithm (Fitting courses to an empty schedule) Event Flow

5.4.16 Test Case 6: Course Overrides

5.4.16.1 Description

This test verifies that a user is able to schedule a course before or with its prerequisite. It

tests the use of the override function, where a user can save their schedule even though

a course’s prerequisite is not complete.

5.4.16.2 Assumptions

The user has not completed SENG 265. The user has received an override for SENG

321, whose prerequisite is SENG 265. The term selected for adding SENG 321 is a valid

term.

5.4.16.3 Pre Conditions

User is logged in to Graduate! and is on the Program Management Page with the

Course Management Menu displayed.

5.4.16.4 Event Flow

Test Step Input Expected Result

User will select Required
Courses from the Course

Management Menu

User clicks Required Courses List of all required courses relating
to the user’s degree are displayed

User selects and drags
SENG 321 into a valid term

User drags SENG 321 into the
schedule

A notification is displayed indicating
SENG 321’s prerequisite has not
been satisfied. Since the user has
an override, a checkbox is displayed
in the notification marked “Ignore”

User marks the “Ignore”
check box

User clicks checkbox SENG 321 is added to the specified
term

Table 17: Course Overrides Event Flow

5.4.17 Test Case 7: Saving User Data

5.4.17.1 Description

This test case verifies that a user can make modifications to their schedule and have it

save to their profile after the modifications have been made.

5.4.17.2 Assumptions

User has registered an account but has not made modifications to the originally

generated schedule. The user did not select “unspecified” for type of degree. The course

being added is in a valid term. User uses the same account for adding a course, as well

as logging out and back in.

5.4.17.3 Pre Conditions

User is logged in and on the Program Management Page with the Course Management

Menu displayed.

5.4.17.4 Event Flow

Test Step Input Expected Result

User will select Required
Courses from the Course

Management Menu

User clicks Required Courses List of all required courses relating
to the user’s degree are displayed

User selects and drags a
required course into a term

User drags a course into the
schedule

The course populates in the desired
term and automatically saves

User will log out of Graduate! User clicks Log Out User is redirected to the Front Page

User logs in to Graduate! User email and password User successfully logs in and is
redirected to the Program
Management Page

User views their schedule No action The course that was added before
logging out is displayed in the
correct term

Table 18: Save User Data Event Flow

FEEDBACK

Additional Testing Requirement

- Perform User Experimentation

Gather up to 3 friends/co-workers and test the UI

1) Create 3 distinct task scenarios with step by step Use Cases for each
2) Explain each scenario to a different person and ask them to perform the respective Use
Case alone (so the other two people are unaware)
3) Do not guide them while they perform
4) Once all 3 complete their scenarios, switch up the scenarios so everyone ends up with a
new case to work on.
5) However, this time do not show them the scenarios, rather explain what has to be done and
let them work on their own.
6) During both phases, record the number of clicks, the time it takes to complete the scenario,
and the number of times the tester makes a mistake that puts them a step backward.

This test will provide feedback on the design of the UI and navigation through the software.

